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Abstract

The generalized plane strain quasi-static thermoelastic deformations of laminated anisotropic thick plates are an-
alyzed by using the Eshelby-Stroh formalism. The laminated plate consists of homogeneous laminae of arbitrary
thicknesses. The three-dimensional equations of linear anisotropic thermoelasticity simplified to the case of generalized
plane strain deformations are exactly satisfied at every point in the body. The analytical solution is in terms of an
infinite series; the continuity conditions at the interfaces and boundary conditions at the bounding surfaces are used to
determine the coefficients. The formulation admits different mechanical and thermal boundary conditions at the edges
of each lamina, and is applicable to thick and thin laminated plates. Results are computed for thick laminated plates
with edges either rigidly clamped, simply supported or traction-free and compared with the predictions of the classical
laminated plate theory and the first-order shear deformation theory. The boundary layer effect near clamped and
traction-free edges is investigated. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Advanced composite materials offer numerous superior properties like high strength-to-weight ratio and
nearly zero coefficient of thermal expansion in the fiber direction. Their strength and stiffness can be tai-
lored to meet stringent design requirements for high-speed aircrafts, spacecrafts and space structures. This
has resulted in their extensive use in structures that are subjected to severe variations in temperature.
Thermal stresses, especially at the interface between two different materials, often represent a significant
factor in the failure of laminated composite structures. Thus, there is a need to accurately predict thermal
stresses in composite structures.

Thermal bending of homogeneous anisotropic thin plates has been investigated by Pell (1946). Subse-
quently, Stavsky (1963) studied the thermal deformation of laminated anisotropic plates. These early
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studies employed the classical laminated plate theory (CLPT) that is based on the Kirchhoff-Love hy-
pothesis. Wu and Tauchert (1980a,b) used the CLPT to study the thermal deformation of laminated
rectangular plates. The CLPT neglects transverse shear deformation and can lead to significant errors for
moderately thick plates. Yang et al. (1966) and Whitney and Pagano (1970) developed the first-order shear
deformation theory (FSDT) for laminated elastic plates. It extends the kinematics of the CLPT by in-
corporating transverse shear strains that are constant through the thickness of the laminate. Reddy et al.
(1980) and Reddy and Hsu (1980) extended the FSDT for thermal deformation and stresses. Various
higher-order theories for the thermal analysis of laminated plates have been reported by Cho et al. (1989),
Khdeir and Reddy (1991, 1999) and Murakami (1993). We refer the reader to Tauchert (1991), Noor and
Burton (1992), Jones (1975) and Reddy (1997) for a historical perspective and for a review of various
approximate theories.

The validity of approximate plate theories and finite-element solutions can be assessed by comparing
their predictions with the analytical solutions of the three-dimensional equations of anisotropic thermo-
elasticity (Noor et al., 1994; Murakami, 1993; Ali et al., 1999). Srinivas and Rao (1972) obtained a three-
dimensional solution for the flexure of laminated, isotropic, simply supported plates. Tauchert (1980) gave
exact thermoelasticity solutions to the plane-strain deformation of orthotropic simply supported laminates
using the method of displacement potentials. Thangjitham and Choi (1991) gave an exact solution for
laminated infinite plates using the Fourier transform technique and the stiffness matrix method. Murakami
(1993) generalized the work of Pagano (1970) to the cylindrical bending of simply supported laminates
subjected to thermal loads. Tungikar and Rao (1994), Noor et al. (1994) and Savoia and Reddy (1995,
1997) gave exact three-dimensional solutions for thermal stresses in simply supported anisotropic rectan-
gular laminates. However, simply supported edge conditions are less often realized in practice, and they do
not exhibit a well-known boundary layer/edge effects near clamped and traction-free edges. The accuracy of
plate theories near and within the edge layer are yet to be carefully investigated.

The Eshelby-Stroh formalism (Eshelby et al., 1953; Stroh, 1958; Ting, 1996) provides exact solutions to
the governing equations of anisotropic elasticity under generalized plane-strain deformations in terms of
analytic functions. Recently, Vel and Batra (1999, 2000) adopted a series solution for the analytic functions
to study the generalized plane-strain and three-dimensional deformations of laminated elastic plates sub-
jected to arbitrary boundary conditions. Here, the method is extended to thermoelastic problems. The
mechanical equilibrium and steady-state heat conduction equations are exactly satisfied, and various
constants in the general solution are determined from the boundary conditions at the bounding surfaces
and continuity conditions at the interfaces between adjoining laminae. This results in an infinite system of
linear equations in infinitely many unknowns. By retaining a large number of terms in the series, the so-
lution can be computed to any desired degree of accuracy. The formulation admits different mechanical and
thermal boundary conditions at the edges of each lamina and is applicable to thick and thin laminated
plates. The procedure is illustrated by computing results for the cylindrical bending of thick laminated
plates with edges either rigidly clamped, simply supported or traction-free and comparing them with the
predictions of the CLPT and the FSDT.

2. Problem formulation

We use a rectangular Cartesian coordinate system, shown in Fig. 1, to describe the infinitesimal quasi-
static thermoelastic deformations of an N-layer laminated elastic plate occupying the region [0,L;] x
(—o00,00) x [0,L;] in the unstressed reference configuration. Here, x; and x, are the in-plane coordinates
and x;, the thickness coordinate of the plate. Planes x; = Lgl),Lf), . ,Lg”), . ,LgNH) describe, respectively,
the lower bounding surface, the interface between the bottom-most and the adjoining lamina, the interfaces
between abutting laminae, and the top bounding surface.
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Fig. 1. An N-layer laminated thick plate.

The equations of mechanical and thermal equilibrium in the absence of body forces and internal heat
sources are (Carlson, 1972)

Ojmm = O» dmm = 0 (]7 m = 1_3)a (la’ b)

where o, are the components of the Cauchy stress tensor and g,,, the heat flux. A comma followed by index
m denotes partial differentiation with respect to the present position x,, of a material particle, and a repeated
index implies summation over the range of the index.

The constitutive equations for a linear anisotropic thermoelastic material are (Carlson, 1972)

Ojm = C/’mqrsqr - ﬁjmT7 qm = _KmrT:ra (23., b)

where Cj,,, are the components of the elasticity tensor, &, the infinitesimal strain tensor, f,,,, the thermal
stress moduli, 7, the change in temperature of the material particle from that in the stress-free reference
configuration and x,,, the thermal conductivity tensor. The infinitesimal strain tensor is related to the
mechanical displacements u, by

Egr = 3(tlgy + Urg).

The mechanical and thermal equations are uncoupled in the sense that the temperature field can first be
determined by solving Eqgs. (1b) and (2b), and displacements u can then be found from Egs. (1a) and (2a).
Material elasticities are assumed to exhibit the symmetries Cgr = Cyjer = Cyrjm- Furthermore, the elasticity
tensor and the thermal conductivity tensor are assumed to be positive definite.

The displacement and/or traction components prescribed on the edges x; = 0 and L,, and bottom and

top surfaces x; = 0 and L3 are presumed not to depend upon x,, and are specified as follows (Ting, 1996, pp.
497-498):

1Y+ 1Y6, =9 on x, =0,
YWu+1Y, =99 onx, =L  (s=1,3), 3)

where (a,), = o4 and I 19 T and 1% are 3 x 3 diagonal matrices, while 9 and 9 are known vector
functions. For ideal restraints at the edges, these diagonal matrices have entries of either zero or one such
that
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with I being the 3 x 3 identity matrix. In other words, we specify on the boundary either a component of the
displacement or traction vector in each coordinate direction. For ideal restraints at the edges, if the surface
x1 = 01s rigidly clamped (C), then IS) =1 Iff1> =0and 9"V =0, i.e. u; = u» = u3 = 0. Boundary conditions
for traction-free (F) and simply supported (S) edges may be specified by If,” =0, Iﬁ,l) =1,9" =0 and
IV = diag[0,0, 1], IV = diag|[1,1,0], 9V = 0, respectively. The specification of the boundary conditions at
a simply supported edge, namely a;; = g1, = 0, u3 = 0, is identical to that used by Pagano (1970). The
method is also applicable when the edges are elastically restrained or when the laminate is on an elastic
foundation in which case the diagonal matrices need not satisfy Eq. (4). The thermal boundary conditions
are specified as

m<S)T + },-(S)qAY = QD(S) on x, = O,
9T + g, =¥ onx, =L, (s=1,3). (5a,b)

By appropriately choosing m®), ), m®) and #* in these equations, various thermal boundary conditions
corresponding to the prescribed temperature, prescribed heat flux and exposure to an ambient temperature
through a boundary conductance can be specified. The interfaces between adjoining laminae are assumed to
be perfectly bonded together and in ideal thermal contact, so that

u[=0, [6;]=0, [T]=0, [5]=0 on x3=°1%, LY, ....L{. 6a,b,c,d
3 3 3

Here, [u] denotes the jump in the value of u across an interface.

Since the applied loads are independent of x,, the body is of infinite extent in the x, direction, and
material properties are uniform, we postulate that the displacement u and temperature 7 are functions of x;
and x3 only, and thus correspond to generalized plane deformation.

3. Thermoelasticity solution

The Eshelby—Stroh formalism (Eshelby et al., 1953; Stroh, 1958; Ting, 1996) provides a general solution
for the generalized plane-strain deformation of an anisotropic elastic body. It was extended to anisotropic
thermoelasticity by Clements (1973), Wu (1984) and Hwu (1990). The general solution satisfies the gov-
erning Egs. (1a), (1b), (2a) and (2b) exactly and is in terms of arbitrary analytic functions. We assume an
infinite series expansion for each analytic function. Boundary conditions (3) and (5), and interface con-
ditions (6) are used to determine the coefficients in the series expansion. We construct a local coordinate
system xﬁ"),xg’),x(;’) with origin at the point where the global x; axis intersects the bottom surface of the nth
lamina; the local axes are parallel to the global axes (Fig. 1). The thickness of the nth lamina is denoted by

h(,,) _ Lgrﬂ»l) _Lgn)

3.1. A general solution

In deriving a general solution of Egs. (1a), (1b), (2a) and (2b) for the nth lamina, we drop the superscript
n for convenience, it being understood that all material properties and variables belong to this lamina.
Assume that

u=af(z) +egz), T=4g(), (7)

where

z=X1 +pxs, Z; = X1 + TX3,
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f and g are arbitrary analytic functions of their arguments, a, ¢, p and t are possible complex constants to
be determined, and g’(z.) = dg/dz,. Substitution from Eq. (7) into Eq. (2) and the result into Eq. (1) gives
(Ting, 1996)

D(p)a =0,
D(t)e = B, + th;, (8a,b,¢)
KT + (K13 + K31)T + k1 = 0,

where
D(p) =Q+p(R+R") +p'T, O =Cut, Ry = Caps,
Ti = Cars,  (Bo);=Bu  (ik=1-3).

The eigenvalue 7 depends on the components of the heat conduction tensor and satisfies the quadratic
equations (8c). Since x;; is positive definite, T obtained by solving Eq. (8c) cannot be real (Clements, 1973;
Ting, 1996). We denote the root with positive imaginary part by t and its complex conjugate by 7. The
eigenvalues p and their associated eigenvectors a are obtained by solving the eigenvalue problem (8a). Since
Cimgr 1s a positive definite tensor, p cannot be real (Eshelby et al., 1953; Ting, 1996). Therefore, there are
three pairs of complex conjugates for p. Let

Im(pa) > 07 Doy3 :ij A3 = 2_‘:( (O( = 1_3) (9aab7c)

The vector ¢ associated with the thermal eigenvalue 7 is obtained by solving the system of equations (8b). If
the eigenvalues p, and 7 are distinct, a general solution of Egs. (1) and (2) obtained by superposing so-
lutions of the form (7) is

u=S (A fi(z) + 8 fua (2] + egi (@) + ez, w0

o=1
T = g(z) + & (z),

where f, (0 =1,2,...,6), g, and g, are arbitrary analytic functions, and z, = x; + p,x3. Substitution of Eq.
(10) into Eq. (2) gives
3 — —
o = Z[_pabaf;(za) _pocbfx o:+3(2a)] - ngll (Z’E) - ‘fdglz(ff),

=1

3 _ _ 11
0= 3 b f1(z) B Sl (5] + dg)(2) + A5, ()

a=1
q = —(r1 + t,3)g) (2c) — (K1 + TK3)g5 (Z0),
where
b, = (R" + p,T)a,, d=(R" +7T)c — B, (Kn); = Kjm-

The general solution (10) and (11) is also applicable when (a) there exist three independent eigenvectors a,
even when the eigenvalues p, (« = 1-3) are not distinct, and (b) either 7 is not equal to one of the p’s or, if
T = p, then Eq. (8b) can be solved for ¢. Anisotropic materials that do not satisfy these conditions are called
degenerate thermoelastic materials. Isotropic materials are a special group of degenerate materials for which
Py =71 =1i Wu (1984) and Yang et al. (1997) have described how the general solution for degenerate
materials can be constructed. Consider a degenerate material for which p; = p, # p3, © # p, and there is
only one eigenvector a; associated with the double root p;. A second independent solution associated with
the eigenvalue p, is
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d dal dfz(Zl)
u=—|a =— +a 12
dp1[ 1.2(21)] dp1f2(21) = (12)
Here, da,;/dp, is obtained by differentiating Eq. (8a):
da1 dD
D—+—a; =0. 13
dpi " dp ™ &

Dempsey and Sinclair (1979) have proved the existence of a non-trivial solution for a; and da,/dp; of Eqgs.
(8a) and (13). Therefore, the general solution is

>l (e + () G e ) 4 e »

T =g(z:) + g4(z:),

where a, = da; /dp;. The corresponding general solution for the stress tensor and the heat flux is obtained
by substituting Eq. (14) into Eq. (2). It is important to note that, irrespective of whether the material is
degenerate or not, there are eight arbitrary analytic functions, namely f, (« = 1,2,...,6), g; and g,. Our
treatment of the degenerate case differs from that of Wu (1984) and Yang et al. (1997) only in one aspect,
namely, we do not require f>(z;) = fi(z1) as they do.

u=

B

3.2. A series solution
Even though Eq. (10) satisfies Eq. (1) for all choices of the analytic functions f, g; and g,, a choice based

on the geometry of the problem and boundary conditions can reduce the algebraic work involved. We select
for the nth lamina

fa(za) = Z{Vr(r}az exp(”mazi) + WSnlaz eXP(’?m(l - ZG‘))} + Z{Vl((:;) exp(ikdzd)
k=0

m=0
) (15a,b)
+ Wi, exXp(Aio(prh —2,))},
fu+3(2a) = M(Za) (O‘ = 1_3)7
where 0 <x; </, 0<x3 <A,
— i =0 LT
= 1711:’ A, = I .
Mg, {_m_r;: 1fm>1’ )ktx {k]m 1fk>1’ (16)
D
i =+/—1 and my,ky € (0,1). The functions g, and g, are chosen as
gi(z) = Y {9 exp(&uze) + W) exp(&ull —20))} + Y {9 exp(liz)
m=0 k=0
A (17a,b)
+ wf) exp((i(th —z,))},
&(z:) = g1(z),
where z, = x; + tx3 and
— M =0 homiif k=0
_ o — )7
é’”_{—’ﬁ—}f fm=1’ C"_{k? ifk>=1" (13)

The function exp(#,,,2,) in Eq. (15) varies sinusoidally on the surface x; = 0 of the nth lamina and decays
exponentially in the x; direction. With increasing k, higher harmonics are introduced on the surface x; = 0
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accompanied by steeper exponential decay in the x; direction. Similarly, functions exp(n,.,(! —z,)),
exp(Awzy) and exp(Aw,(ph — z,)) vary sinusoidally on surfaces x; = I, x; = 0 and x; = A, respectively. In
essence, single Fourier series in the x; and x; directions are superposed for each lamina to solve the problem.
This idea of superposing single Fourier series dates back to Mathieu (1890), who used it to analyze the
plane strain deformation of a rectangular region of isotropic material subjected to arbitrary tractions on
the boundaries. The inequality in (9a) ensures that all functions decay exponentially towards the interior of
the lamina. The choices (15b) and (17b) for f,,3(z,) and g»(Z;) ensure that the mechanical displacements,
stresses, temperature change and heat flux are real valued. The functions involving m and ky play the role
of a constant term in the Fourier series expansion.

The unknowns v\, w, 9!, W\ (s = 1,3) are assumed to be complex for k # 0 and real when k = 0.
The superscript s indicates that the exponential function associated with the unknown has a sinusoidal
variation on the surface x;, = constant. Substitution of Egs. (15a), (15b), (17a) and (17b) into the general
solution (10) and (11) results in the following expressions for the displacements and the temperature change
for nondegenerate materials:

u= A{i[(exp(f’/mz*)ﬁﬁ) +{exp (1, (1 = 2.))) Wiy
- i [(exp(az )W + (exp(ia, (poh — ) wi | }
+ C{i | exp(&yz0) ¥4+ exp(& (1 = 2) 94|

m=0 (19a,b)

+ Z [exp((,{zr){/f) + exp({(th — zr))\?v,(f)} } + conjugate,

ﬂ
I
NgE

& exp(&,2) 0L — &, exp(&,(1 - 2)W) |

+ Z {Ck exp(§ze )Y — G exp((th — zf))\?v,(f)} + conjugate,

k=0

A= [317 s, 33]7 <1ﬂ(z*)> = diag[l//(zl)a lP(Zz), l10(23)]7
(W), = wl) o= 1-3,

m ma.?

and conjugate stands for the complex conjugate of the explicitly stated terms. Expressions for stresses and
heat flux are derived by substituting from Eq. (19) into Eq. (2). Our choice of analytic functions remains the
same for a degenerate material, and the corresponding expressions for the displacement and the temper-
ature change are obtained by substituting them into the appropriately modified general solution. As an
example, for the degeneracy considered earlier, the expressions for the displacements and the temperature
are obtained by substituting Egs. (15) and (17) into Eq. (14).

3.3. Satisfaction of boundary and interface conditions

Each lamina has its own set of unknowns v\, w\ ¢\ & (s = 1,3). These are determined from the
interface continuity conditions and boundary conditions on all surfaces of the laminate by the classical
Fourier series method.
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Since the heat conduction problem is uncoupled from the mechanical problem, we first determine the
temperature field by imposing the thermal boundary conditions on the four bounding surfaces of the
laminate and the continuity of temperature and heat flux across the interfaces between the adjoining
laminae. On the top surface ng) = LgN“) of the laminate, we extend the component functions defined over
(0,L;) in Eq. (19b) to the interval (—L;,0) in the x; direction. The functions exp ({;z,) and exp ({;(th — z.))
that are sinusoidal in the x| direction are extended without modification since they form the basis functions
on this surface, except for exp ({yz.)and exp ({y(th — z;)) that are extended as even functions since they
represent the constant terms in the Fourier series representation. The functions exp (&,z,) and exp (&,,(I1—
z.)) are extended as even functions since they vary exponentially in the x; direction. We multiply Eq. (5b)

for s = 3 by exp (jmix;/L;) and integrate the result with respect to x; from —L; to L, to obtain
Ly
/ (T + 793 — P} exp(jmix; /L) dx; =0 (x5 = Ls; j = 1,2,3,...). (20)
—L

The same procedure is used to enforce the thermal boundary conditions (5a) and (5b) for the bot-
tom surface, the edges and the interface thermal continuity conditions (6¢) and (6d). Substitution of 7" and
q into Eq. (20) and the other equations that enforce the thermal boundary and interface continuity con-
ditions results in a nonstandard infinite set of linear equations for the unknowns v\, w" (s = 1,3).

The mechanical boundary conditions (3) and interface continuity conditions (6a) and (6b) for the dis-
placement and traction are also enforced in a similar manner. For example, the mechanical boundary

conditions on the surface x; = L; will give

Ly - N 5
/ {II(;)U +I((I3)0'3 — ’19<3)} CXp(jﬂixl/Ll)dX1 = 0, ()C3 = L37] = 132737 < ) (21)

Ly

Enforcing all the mechanical boundary and interface conditions will give another nonstandard infinite set
of linear equations for v%¥), w¥). A general theory for the resulting infinite system of equations does not exist.
However, reasonably accurate solutions may be obtained by truncating the series involving summations
over m and k in Eqgs. (15a), (15b), (17a) and (17b) to K; and K3(") terms, respectively. In general, we try to
maintain approximately the same period of the largest harmonic on all interfaces and boundaries
by choosing K3(") = Ceil (K,4" /L;), where Ceil(y) gives the smallest integer greater than or equal to y. The
truncated set of coefficients \7,(("'), \?v,(f> are determined first by solving the truncated set of linear equations
corresponding to the heat conduction problem. The truncated set of coefficients v\*), w*) are determined
next by solving the truncated system of linear equations obtained by enforcing the mechanical boundary
and interface continuity conditions.

The solution (19) indicates that the component functions decrease exponentially from the boundary/
interfaces into the interior of the nth lamina. By truncating the series, we have effectively ignored coeffi-
cients with suffices greater than a particular value and approximated the coefficients which have small
suffices. Due to the rapid decay of component functions associated with large suffices, the truncation of the
series will not greatly influence the solution at the interior points. A larger value of K is expected to give a
more accurate solution at points close to the boundary and interfaces. Note that the coefficients v,(j) and w,(f)
in the expressions for the stresses are multiplied by 4., and v and w!!) are multiplied by 7,,.. However, the
coefficients of these terms in the expressions (19a) for displacements are unity. Since 4, and 7,,, increase as
the suffices k and m increase, the terms with large suffices are more significant for the stresses than for the
displacements. Thus, the stresses will converge more slowly than the displacements. Once the coefficients
have been determined by satisfying the boundary and interface conditions, the displacements, stresses,
temperature and heat flux for each lamina are obtained from Eq. (19).
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4. Solutions from the CLPT and the FSDT

We assume the following unified displacement field:
du 0
wy (x1,x3) = ) (x1) + x3 {Codx +ci1¢, (Xl)}
1
uz(x1,x3) = 13 (x1) + crx3p, (x1),

M3(X1,X3) = ”g(xl)v

(22)

where u(x,) are the displacements of a point on the bottom surface x; = 0 which was taken as the reference
surface. The displacement field of the CLPT is obtained by setting ¢o = —1,¢; = 0 in Eq. (22), and that of
the FSDT, also known as the Reissner—-Mindlin plate theory, is obtained by taking ¢y = 0,¢; = 1. The
functions ¢, and ¢, in the FSDT are the rotations of the normals about the x, and x; axes, respectively. The
infinitesimal strains associated with the displacement field (22) are

duf d*ul d¢, du d¢,
> = — 2 = —
11 & +X3[ dx2 3+ ldxl} €12 ax 24 copx Y )
duf
213 = (1 +00)§3+cl¢1, 2oy =ci1¢p;,  en=0.
1

The in-plane and transverse stresses for the nth lamina are related to the strains by the constitutive rela-
tionship:

o1 " Ql] le Qlé " 1 %11 "
022 =0n On 0O €2 - %2 T\,
012 O O Yoo 2¢1p 2015 (24)

: _ 1
{ 023 }( ) | Ou Qs { 2e53 }
13 Oss Oss 2¢13 )

where Qij and o;; are the reduced elastic stiffnesses and thermal expansion coefficients, respectively (Jones,

1975).
The governing equations, obtained by using the principle of virtual work, are

dNy dNpy
0 =0
dm dm
C1W11—01Q1 0, ¢ dx:2—01Q2=07 (25)
d &My,
(1+CO)d%_ 0 dx2“+f(x1):0’
1

where the resultants are defined by

Ly
[ affs 1/ia Qa] - / [0—1/37 Oyp X3, %Gaﬂ d.X'3 (O(, ﬂ = 17 2)7 (26)
0

and f is the distributed transverse mechanical load per unit length along the span. The parameter 4 that
appears in the computation of the shear resultants Q, is called the shear-correction coefficient. Although the
shear-correction coefficient depends on the laminate properties and the lamination scheme, we assume that
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A = 5/6 which is widely used in the FSDT literature (Whitney and Pagano, 1970). We assume the fol-
lowing boundary conditions for simply supported (S), clamped (C) and traction-free (F) edges:

S: Ny=Np=0, coMj=cMy=0, cM;=0 =0,

C: u?:ug:ug:O, c1p, =c1¢p, =0, —co%’gzo, (27)
1

dM,,

&, =0.

F: Nijp=Np=0, My = ciMy; =0, coM; =0, (1 +¢c)01 —co

Some of the boundary conditions in Eq. (27) will be identically satisfied depending on our choice of ¢, and
c1. The equilibrium equations (25) and boundary conditions (27) can be expressed in terms of the dis-
placements and rotations by substituting Egs. (23) and (24) into Eq. (26) and the result into Egs. (25) and
(27). For the linear problem considered, we obtain a set of coupled linear ordinary differential equations for
the displacements and rotations with the associated boundary conditions at x; = 0, L. They are solved by
using Mathematica for the displacements and rotations, and hence the stresses.

In the CLPT, the interlaminar shear stresses 13 and 0,3 are identically zero when computed from the
constitutive equation. However, these stresses and the transverse normal stress o3; may be computed by
using the equilibrium equation (la) after the in-plane stresses a1, 01» and o, have been determined:

_ 0oy
0'13(X1,X3) - 0 6)61 (xl7é) dév
3 0o
0'23(x1,X3) = - a—lz(th)d@ (28)
0 X1
% 0o
o33(x1,x3) = 033(x1,0) — a—m(xl,ﬁ)dé,
0 X1

where it is assumed that the shear traction vanishes on the top and bottom surfaces. The transverse stresses
thus obtained are continuous across the interfaces between adjoining laminae. The same procedure is
employed for the FSDT since the transverse shear stresses obtained from the constitutive equations, al-
though nonzero, may be discontinuous across the interfaces between adjoining laminae.

5. Results and discussion

We consider layers of unidirectional fiber reinforced graphite—epoxy material, model each layer as or-
thotropic and assign the following values to its mechanical and thermal material parameters:

Ey = Ey, Er = Ey/10, Grr = Ey/20, Grr = Eo/50, vir = vrr = 1/4,

(29)

o, = o, ot = 7.20(0, KL = IOOKO7 KT = Ko,
where E is the Young’s modulus, G, the shear modulus, v, the Poisson’s ratio, , the coefficient of thermal
expansion, k, the thermal conductivity, and subscripts L and T indicate directions parallel and perpen-
dicular to the fibers, respectively. The material properties are identical to those used by Tauchert (1980).
For values given in Eq. (29), the nonzero components of the elasticity matrix Cy;, thermal stress moduli f;;
and heat conduction tensor «;; are listed in Table 1 for four different orientations of the fiber with respect to
the x| axis on the x;—x, plane. The lamination scheme of the laminate is denoted by [0,/0,/ - - - /0x], where
0, is the angle between the fibers and the x| axis in the nth lamina (Fig. 1) and all laminae are of equal
thicknesses. In this section, we denote the thickness of the plate by H(= L;).
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Table 1
Non-vanishing material properties of the graphite-epoxy lamina

Property Lamina

0° 90° 45° —45°
Cin/Eo 1.0169 0.1078 0.3481 0.3481
Com [ Eo 0.1078 1.0169 0.3481 0.3481
Ci333/Ep 0.1078 0.1078 0.1078 0.1078
Ciun/Eo 0.0339 0.0339 0.2481 0.2481
Ci33/Ep 0.0339 0.0278 0.0308 0.0308
Cus3/Ey 0.0278 0.0339 0.0308 0.0308
Coni/Eo 0.02 0.05 0.0350 0.0350
Cs131/Eo 0.05 0.02 0.0350 0.0350
Ci12/Eo 0.05 0.02 0.2642 0.2642
Ci12/Eo 0 0 0.2273 —0.2273
Cy1a/Eoy 0 0 0.2273 —0.2273
Cs12/Ey 0 0 0.0031 —0.0031
Cy31/Eo 0 0 0.0150 —0.0150
P /oEo 1.5051 1.0102 1.2576 1.2576
P /o0Es 1.0102 1.5051 1.2576 1.2576
Pra/o0Ey 0 0 0.2475 —0.2475
B3/ %0 Eo 1.0102 1.0102 1.0102 1.0102
K[]/KO 100.0 1.0 50.5 50.5
K2 /Ko 1.0 100.0 50.5 50.5
K]z/KO 0 0 49.5 —49.5
K33/ Ko 1.0 1.0 1.0 1.0
The edges x; = 0 and L, are either clamped (u; = u, = u3 = 0), or traction-free with (¢, = g, = g3 = 0)

or simply supported (a;; = g1, = 0,u3 = 0). The notation C-F denotes a plate that is clamped at x; = 0 and
traction-free at x; = L, i.e. a cantilever laminate. The top surface x; = H is subjected to the sinusoidal
temperature increase

T(x, H) = Ty sin )
Ly
while the bottom surface and the two edges are maintained at the reference temperature. Since the tem-
perature field is assumed to be known in the CLPT and the FSDT, we substitute the temperature field (19b)
into Eq. (24). The surfaces x; = 0, H are traction-free, i.e. 63(x;,0) = 63(x1, H) = 0. Thus, the stresses in the
laminate are solely due to the temperature distribution applied on the top surface. We do not consider
mechanical loads here since the deformation induced by them has been studied by Vel and Batra (2000).
For a linear problem, the results for combined mechanical and thermal loading can be obtained by su-
perposition of the corresponding results.

The problem of a simply supported laminate studied by Tauchert (1980) was analyzed by the present
method with K; = 500 terms, and the two sets of results for the temperature, displacements and stresses
were identical. The effect of truncation of the series on the accuracy of the solution is investigated for a 0°
homogeneous C-S plate. Computed results for the displacements and stresses at specific points in the
laminate are listed in Table 2 for L;/H = 5. The following nondimensionalization has been used:

i;(x1,x3) = u;(x1,x3) /Toono Ly, Gix(x1,x3) = ap(x1,%x3)/Eooo T,
é(xr) = [us(xr, H) — us(x1,0)] /us(x1, H/2),

where ¢ is the normalized change in the thickness of the plate. The Table 2 shows that the values of the
normalized displacements and stresses do not change upto third decimal place when K is increased from
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Table 2
Convergence study for a 0° homogeneous graphite—epoxy C-S laminate subjected to thermal load, L;/H =5
Theory 10ﬁ1 101}3 105’11 1006’13 10006’33 é(L1/2)
(Li,H) (Li/2,H/2) (L1/2,H) (L1/8,H/2) (L1/8,H/2)
Analytical
K; =50 2.3771 1.9144 —6.7562 1.5637 —3.1507 1.5059
K, =100 2.3884 1.9123 —6.7542 1.5606 —3.1782 1.5076
K, =200 2.3927 19118 —6.7547 1.5611 —3.1844 1.5080
K, =400 2.3942 1.9116 —6.7549 1.5612 —3.1859 1.5081
K; =500 2.3945 1.9116 —6.7549 1.5612 —3.1861 1.5081
CLPT 1.8058 1.6080 —7.9608 2.4643 1.4796 -
FSDT 2.1644 2.0563 —7.5999 2.1034 1.4796 -

400 to 500 terms while reasonable accuracy may be obtained with 100 terms. The corresponding CLPT and
FSDT solutions are listed for comparison. It should be noted that the present solution with just 50 terms
gives substantially better results than those obtained with either the CLPT or the FSDT for stresses and
displacements in a thick plate. Whereas the CLPT underpredicts the transverse deflection of the centroid of
the laminate by 15.9%, the FSDT overpredicts it by 7.6%. The CLPT and the FSDT overpredict the
magnitude of the longitudinal stress o1; by 17.9% and 12.5%, respectively. According to the 3-D theory, the
change in the plate thickness at the midspan equals 150.8% of the deflection there. While &y and m, in Egs.
(16) and (18) were chosen to be 0.5 for this study, a similar convergence behavior was observed for other
values of ky and my.

Having established the convergence of the thermoelasticity solution, we plot and compare results from
the present method with those obtained from the CLPT and the FSDT. The transverse deflection of the
midplane of a 0° C-S homogeneous laminate for two different span-to-thickness ratios is depicted in Fig.
2(a) and (b). For L;/H =5, the CLPT underestimates the magnitude of the midplane deflection and the
FSDT overestimates it. The agreement between all three solutions is very good for L;/H > 20. For
L,/H =5, the slope at the clamped edge of the deflection curve predicted by the FSDT and the 3-D theory
are nonzero; however the two theories give different values of this slope. Fig. 2(c) and (d) show the through-
thickness variation of the transverse displacement at the midspan of the plate. While the CLPT and the
FSDT yield a constant value for u; through the thickness, the thermoelasticity theory predicts a nonlinear
distribution. The CLPT and the FSDT underestimate the transverse deflection of the top surface by 66%
and 56%, respectively for L;/H = 5. The error reduces to 14% and 12%, respectively for L, /H = 20. If an
accurate solution for the transverse displacement is desired, then one should use higher-order plate theories
which assume a quadratic or higher-order variation of the transverse displacement through the thickness
and take the reference plane other than the midsurface of the plate. Otherwise, a full three-dimensional
analysis of the equations of anisotropic thermoelasticity is recommended.

Fig. 3 depicts the longitudinal variation of the transverse shear stress ;3 on the midsurface for three
different combinations of boundary conditions and for span-to-thickness ratios of 5 and 10. When the edges
are simply supported, the percentage error of the CLPT and the FSDT with respect to the thermoelasticity
solution remains essentially the same at every point along the span of the plate. The percentage errors near
the clamped and traction-free edges of a cantilever plate are significantly larger than those at the midspan,
as shown in Fig. 3(c) and (d). This is due to the presence of boundary layers at the clamped and traction-
free edges. The width of the boundary layers may be equated with the distance from the edges x; = 0 or L,
of the point, where the curvature of the curve o3 vs. x; suddenly changes. This definition gives the
boundary layer width as approximately 0.25L; and 0.08L, at the clamped and traction-free edges, re-
spectively, for a cantilever plate with span-to-thickness ratio of 5. The boundary layer widths reduce to
0.15L; and 0.04L,, respectively when the span-to-thickness ratio equals 10. Thus, the boundary layer width
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Fig. 2. (a, b) The longitudinal distribution and (c, d) through-thickness distribution of the nondimensional transverse deflection of a
clamped-simply supported 0° homogeneous plate for span-to-thickness ratios of 5 and 20. The plate is subjected to a thermal load on
the top surface.

strongly depends upon the span-to-thickness ratio of the plate. There is a significant discrepancy between
the thermoelasticity solution and the predictions of the CLPT and the FSDT within the boundary layer.
The longitudinal variation of the transverse shear stress for a C-S plate is depicted in Fig. 3(e) and (f). Fig.
3(a), (b), (¢) and (f) reveal the absence of boundary layers at simply supported edges. The through-thickness
variation of the transverse normal stress o33 is shown in Fig. 4 for a C-S plate with the span-to-thickness
ratio of 5. As is evident from Fig. 4(a), the CLPT and the FSDT overestimate o33 at the midspan. Fig. 4(b)
depicts the through-thickness distribution of ¢33 at the section x; = 0.1L; which is located near the clamped
edge. Although the two plate theories give a tensile transverse normal stress, the thermoelasticity theory
predicts it to be compressive.

The through-thickness variation of the longitudinal stress is shown in Fig. 5 for thick (L;/H = 5) cross-
ply C-F and C-S laminates. Fiber orientations [0/90] and [90/0] are considered. Fig. 5(a) and (b) evince the
through-thickness variation of the longitudinal stress at a section close to the traction-free edge of a
cantilever laminate, while Fig. 5(c) and (d) depict corresponding results for a section near the clamped edge
of a C-S laminate. The approximate plate theories show good agreement for o1, with the thermoelasticity
solution even within the boundary layers at the two edges. The longitudinal stress distribution for cross-ply
simply supported laminates are not shown here since they are identical to those given by Tauchert (1980).
The transverse shear stress distribution at x; = 0.1L; for thick cross-ply antisymmetric and symmetric C-S
laminates is depicted in Fig. 6. Although the FSDT accounts for the transverse shear deformation, its
prediction of the transverse shear stress is in considerable error near the clamped edge. The axial variation
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Fig. 3. The longitudinal distribution of the nondimensional transverse shear stress for a 0° homogeneous plate with span-to-thickness
ratios of either 5 or 10 and subjected to a thermal load on the top surface: (a, b) simply supported on both edges, (c, d) clamped-free
and (e, f) clamped-simply supported.

of the transverse shear stress on the midsurface of antisymmetric and symmetric cross-ply laminates is given
in Fig. 7(a) and (b). The midsurface coincides with the interface in the case of the [0/90] laminate. The
transverse shear stress in this case exhibits severe oscillations at points on the interface between the 0°
lamina and the 90° lamina that are near the clamped edge. This may be due to the presence of a singularity
in the stress field at the point (0,H/2) where two right-angle wedges of different materials meet. The ex-
istence of a singularity can be confirmed only by performing an asymptotic analysis (Ting and Hwu, 1991).
The high-frequency oscillation in the transverse shear stress is associated with component functions in-
volving large values of the index & in the series solution (19a,b). Due to our choice of basis functions in Egs.
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Fig. 4. The through-thickness distribution of the nondimensional transverse normal stress at (a) the midspan and (b) close to the
clamped edge of a clamped simply supported 0° homogeneous plate, L;/H = 5, and with a thermal load applied on its top surface.
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Fig. 5. The through-thickness distribution of the nondimensional longitudinal stress for (a, b) a clamped-free and (c, d) a clamped-
simply supported cross-ply laminate, L;/H = 5, and subjected to a thermal load on the top surface.

(15a) and (15b) that exponentially decay towards the interior of each lamina, the high-frequency oscilla-
tions decay very rapidly away from the interfaces. In the beam theories, the traction-free boundary con-
ditions at the edge x; = L, are not satisfied pointwise but on the average, i.e., the resultant force there
vanishes. In the present thermoelasticity solution, the longitudinal stress vanishes at all points on the
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Fig. 6. The through-thickness distribution of the nondimensional transverse shear stress for a clamped-simply supported (a, b) 2-layer
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and (c, d) 3-layer cross-ply laminates, L, /H = 5. A thermal load is applied on the top surface of the plate.

Fig. 7. The longitudinal distribution of the nondimensional transverse shear stress on the midplane of (a, b) a clamped-free and (c, d) a
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clamped-simply supported cross-ply laminates, L, /H = 5, with a thermal load applied on its top surface.
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Fig. 8. The through-thickness distribution of (a, b) the nondimensional transverse shear stress o,; and (c, d) displacement u, for 2-layer
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Table 3

laminates, L;/H = 5, and a thermal load applied on the top surface.

Displacement and stresses at specific locations for 2-ply laminates subjected to various boundary conditions, L, /H = 5. A thermal load
is applied to the top surface of the laminate

Variable [0/90] [90/0] [45/—45]
S-S CF c-S S-S C-F C-S S-S CF c-S
10it; (L, /4, H) —10.495 2880 —4203 —1.642 0483 —0.125 5654 1702  —1.601
10ii,(3L, /4, H) 0.000 0.000  0.000  0.000  0.000 0000 1734  3.535 0.551
ii3(L1 /2, H/2) 2603  —1.528 1179 0502 -0332 0213  1.657 —1.000 0.717
10611(L1/2, H) —2805  —2.818 —4441 4531 -4559 5910 -2906 -2913  —4.723
1064, (L1 /2,0) —9.171  —9.302 2414 —0278 —0278  0.044 —2.049 —2.042  —0232
10613(L, /4, H /4) 0.400 0308 0702 0032 0020 0046 0098  0.086 0.204
10623(L1 /4, 3H /4) 0.000 0.000  0.000  0.000  0.000 0000 —0.144 —0.125  —0.168
100635 (L1 /2, 3H /4) 0.289 0278 0276  0.175 0168  0.166  0.148  0.148 0.147

surface x; = L;. The corresponding transverse shear stress on the midplane of clamped simply supported
laminates is given in Fig. 7(c) and (d). In this case too, the oscillations are present at points on the interface
between the adjoining laminae that are near the clamped edge. Fig. 8(a) and (b) depict the through-
thickness distribution of the transverse shear stress g,; for antisymmetric and symmetric angle-ply C-S
laminates. The corresponding plots of the displacement u, are given in Fig. 8(c) and (d). The thermo-
elasticity solution exhibits a highly nonlinear through-thickness behavior for u,. The predictions from the
CLPT and the FSDT that can at best represent an affine behavior for u, are in considerable error.
Numerical results for 2-ply and 3-ply laminates subjected to various boundary conditions are given in
Tables 3 and 4. They can be used to compare predictions from various plate theories and finite-element

solutions.
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Table 4
Displacement and stresses at specific locations for 3-ply laminates subjected to various boundary conditions, L, /H = 5. A thermal load
is applied to the top surface of the laminate

Variable [0/90/0] [90/0/90] [45/—45/45]

S-S CF CS S-S CF CS S-S CF CS
10it, (L, /4, H) —1.743 0512  —0.168 —8243 2221 —3211 —4.567  1.063 ~1.128
10iiy(3L, /4, H) 0.000 0.000  0.000  0.000  0.000 0000 —0.700 —0.912 ~0.696
iiy(Ly /2, H /2) 0405  —0.247 0217 2723 —1583  1.177 1219 —0.596 0.607
1064, (L, /2, H) —4.083  —4.100 -5502 -3.812 —3.821 —5.058 —3.505 —3.519 ~5.051
10611 (L1 /2,0) —0.795  —0.790  0.618 —1.924 —1.921 —0.687 —1.631 —1.621 —0.088
100613(L1 /4, H /2) 0.134 0073 1247 1863 1744 4219 0268 0278 1.814
100623 (L1 /4, H /2) 0.000 0.000 0000 0000  0.000 0000 1112 0721 1.287
1000635 (L1 /2, H /2) 0.279 0239 0231 6763 6664 6624 2913  2.894 2.882

6. Conclusions

We have used the Eshelby-Stroh formalism to study the generalized plane strain thermoelastic defor-
mations of anisotropic thick laminated plates subjected to arbitrary mechanical and thermal boundary
conditions at the edges. The three-dimensional equations of quasi-static, linear, anisotropic thermoelasticity
simplified to the case of generalized plane strain deformations are exactly satisfied at every point in the
body. The analytical solution is in terms of an infinite series; the continuity conditions at the interfaces and
boundary conditions on the bounding surfaces are used to determine the coefficients.

Results for a thermal load applied on the top surface are presented for antisymmetric and symmetric
cross-ply and angle-ply laminated plates with clamped, traction-free or simply supported edges. Our
computed results for simply supported plates agree with those of Tauchert. The thermoelasticity results
are compared with the predictions of the classical laminated plate theory and the first-order shear de-
formation theory. The thermoelasticity solution depicts a quadratic through-thickness variation of the
transverse displacement. For a single layer 0° homogeneous cantilever laminate of thickness 0.2L;, the
longitudinal distribution of the transverse shear stress exhibits boundary layers of width 0.25L; and 0.08L,
at the clamped and traction-free edges, respectively, where L; equals the span of the plate. We note that
the width of the boundary layer will generally decrease with an increase in the value of L;/H. The
transverse shear and transverse normal stresses computed from the CLPT and the FSDT exhibit signifi-
cant errors near the clamped and traction-free edges where the influence of the boundary layer is sig-
nificant. The CLPT and the FSDT give good results for the longitudinal stress. In the case of angle-ply
laminates, the FSDT and the CLPT are not able to capture the complicated through-thickness behavior of
the displacement u,.

The computed results prove the versatility of the proposed technique for obtaining accurate stresses for
thick laminates subjected to various boundary conditions. The tabulated results presented herein should
help establish the validity of various plate theories.
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